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The Problem of Power 
Circuit supply 

voltages are no 
longer scaling… 

Power does not decrease at the 
same rate that transistor count 

increases 
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The emerging dilemma:  
More and more cores can fit on a die, but we can not turn them all on!  

“Dark Silicon.” 
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Today: Super-Vth 

Super-Vth 
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Normalized Power, Energy, & Performance 
Energy per operation is the key metric for 

efficiency. 
Goal: same performance, lower energy per 

operation 

Source: Kurd et. al., JSSC 2009. 
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Energy/Delay with Voltage Scaling 

  Minimum energy reached when further voltage scaling increases leakage 
more than dynamic energy is reduced 
  In older technologies, Vopt < Vth giving rise to subthreshold design 

 [Zhai, DAC 2004] 
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Lowest Energy Operation 
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500 – 1000X 

12-16X 

Operating in the sub-threshold gives us huge 
power gains at the expense of performance 

Latency is very high   

OK for sensors but not for general purpose 
computing! 

Vmin Vmax 
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Performance vs. Energy 
  Measured Performance and Energy of ARM Cortex M3 in 180nm CMOS 

  Vopt = 400mV with Eopt = 30 pJ/instr and 73 kHz frequency 
  At 500 mV, 40 pJ/instr and 1 MHz frequency 

Photomicrograph of 180nm M3 core 

[Seok, VLSI Symp 2008] 
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Parallelization – The Dim Horseman 
  Start with runtime at nominal voltage 

  Lower the voltage to increase energy-efficiency 

  Add more cores to overcome performance loss 
(meet the original runtime) 

  Repeat the process until reaching Vopt 

How do parallelization overheads impact Vopt? 
What is the number of cores @ Vopt? 

How do these numbers change with technology scaling? 
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Voltage Scaling w/ Performance Recovery 
  Non-ideal parallelism → energy overhead → increase in Vopt and Eopt  

  Overhead Sources 
  Non-Ideal Parallelism 

(Synchronization,     
Amdahl’s law) 

  Architecture 
(Coherency, 
cache overhead) 

  Physical 
(Routing, 
clock distribution) 

Overhead shifts curve up 
and to the right 
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Overhead: Amdahl’s Law 

  Application-dependent scalability impacts energy optimality 
 Model non-ideal speedup with Amdahl’s equation 

  Obtain Amdahl serial coefficient 

  Simulated results of SPLASH-2 benchmarks in M5 
  Ideal memory/caches 

S(N) = 1/[(1 – P) + P/N] 

Source: Amdahl et. al., AFIPS 1967. 
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Overhead: Amdahl’s Law, cont. 

  Vopt increases (e.g. from 300 mV to 400 mV) 
  Parallelization overheads increase penalty for low-voltage operation 
 More energy savings if operated at a higher voltage 
 Minimum energy point increases 
  Dependent on Amdahl serial coefficient 

Worse 

Vopt 
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Overhead: Architectural & Physical 

  Architectural & physical overheads include 
  Coherence protocols, cache and memory hierarchy 
  Physical routing, interconnect networks 

  SPLASH-2 benchmarks simulated on gem5 architecture 
  Further reduces achievable energy-efficiency, increases Vopt 

Feature Description 

Cores 1 to 64 one-IPC Alpha cores @ 1GHz 
L1 Caches 

L2 Caches 

Interconnect 

32 kB, 1 cycle latency, 
4-way associative, 64-byte line size 

Shared 1MB divided evenly between 
cores, 10 cycle latency, 
8-way associative, 64-byte line size 

2-GHz Routers, 128-bit, 
2-stage routers, 50 cycle-access to 
main memory 

Vopt 

Even 
Worse 
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Optimal Operating Voltage Across Technology 

  Tested on 6 commercial technologies from 180 – 32nm 
  NTC region is 200 mV to 400 mV above Vt in recent techs 

 Approximately tracks with Vt 
 Optimal energy for single, parallelized task – best way to 

use extra cores on CMP 
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Optimal Operating Voltage Across Technology 

NTC Region 200 mV 
to 400 mV above Vt 

and tracks. 

  Tested on 6 commercial technologies from 180 – 32nm 
  NTC region is 200 mV to 400 mV above Vt in recent techs 

 Approximately tracks with Vt 
 Optimal energy for single, parallelized task – best way to 

use extra cores on CMP 

Zhai, ISLPED 2007 
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Gain from Vnom to Vopt 

Number Cores 

Energy Gain 

  Energy gain over nominal supply voltage 
  Cores used to parallelize decreased from 20 to 12 cores 
  Energy gains decrease from 7.5x to 4x in 32nm 

7X Energy Gain 
20 Cores Needed 

4X Energy Gain 
12 Cores Needed 

Maximum of 12 
cores required for 
one task in 32nm. 

Energy gain of 4x 
from operating at 

NTC. 
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Near-Threshold Computing 

Vmin 

E
ne

rg
y 

/ O
pe

ra
tio

n 
Lo

g 
(D

el
ay

) 

Supply Voltage 
0 Vth Vnom 

~2 -10X 

~2X 

~3 - 8X 

Near-Threshold Computing (NTC): 
• 10 - 50X power reduction 
• 3 - 8X energy reduction 

•  Minimize energy while considering latency 

Vopt Vmax 

3-8x 
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Architectural Impact of NTC 

  Caches have higher Vopt and operating frequency 
  Smaller activity rate when compared to core logic 
  Leakage larger proportion of total power in caches 
  Higher Vt can offset this somewhat 

Vt 
Core 

Core 



18 18 

18 

University of Michigan 18 DaSi – June 10, 2012 

Architectural Impact of NTC 

  Caches have higher Vopt and operating frequency 
  Smaller activity rate when compared to core logic 
  Leakage larger proportion of total power in caches 
  Higher Vt can offset this somewhat 

Vt 
Core 

L1 

L2 

Core 

L1 

L2 
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Cluster 

L1 

  SRAM runs at a higher VDD than 
cores with energy efficiency 

  Caches / Core Inversion 
  Cache runs faster than core 

  Clustered architectures 
  Multiple Cores share L1 
  L1 satisfy all core requests in 

1-cycle 
  Cores see view of private 

single cycle L1 

Cluster Cluster Cluster 

Core Core Core Core 

New NTC Architectures 

  Advantages:  
  Clustered sharing 
  Less coherence/snoop traffic 
  Virtualizes the space (looks larger) 

  Drawbacks: 
  Core conflicts evicting L1 data 
  Additional Bus/Interconnect from cores to L1 
  Single larger cache increases energy/access 

L1 

BUS / Switched Network 

Next Level Memory 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

BUS / Switched Network 

Next Level Memory 

L1 L1 L1 L1 



20 20 

20 

University of Michigan 20 DaSi – June 10, 2012 

Centip3De Design 

D. Fick, ISSCC 2012 

  128 ARM Cortex-M3 cores 
  7-layer stack architecture 
  TSV interconnects 
  Physical Specs 

  130nm technology 
  12.66 mm x 5 mm per layer 
  92M device across 4 layers 
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NTC Example: Centip3De Results 

 Measured Results (DMIPS/W) 
Centip3De – 3,930 (130nm) 

  Estimated Results: 
Centip3De – 18,500 (45nm) 

 Many different voltage configurations 
  Cores operate from 0.65 V (10 MHz) to 1.15 V (80 MHz) 
  L1 caches operate from 0.8 V (80 MHz) to 1.65 V (160 MHz) 
 Max of four cores/cache 

  4.5x energy efficiency gain from NT operation 
Source: D. Fick, et. al., ISSCC 2012 
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Conclusions 
  Past: Area-Constrained Computing 

  Traditional dynamic voltage and frequency scaling 
  Lowers voltage to save energy, but only when idling 
  With latency-sensitive workloads increase voltage to full 

  Today: Power-Constrained Computing – Dark Silicon 
  Computation is limited by power 
  Glut of Cores: not possible to use all cores simultaneously 
  By improving energy efficiency, more cores can be enabled 
  High energy-efficiency leads to improved computational performance 

  Approach: Near-Threshold Computing 
  Reduce voltage to increase energy-efficiency 
  Maintain throughput and latency by parallelizing 
  Optimal energy achieves 4x improvement while parallelizing across ~12 cores 

on average 
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Additional Information Slides 

Results Per Benchmark 
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Impact of Variation in 40nm 

  Long logic chains average out variation 
  Local variation is ~30% of total delay variation for a single gate in NTC 
  Decreases to 10% of total variation for a logic chain of 31 gates 

 Multiple paths 
  Higher mean delay, but tighter variation. Increase Vopt 30 to 60 mV. 

NTC Region 
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Vopt Including Process Variations 

Vopt (3σ Variation) 

Vopt (No Variation) 

FMM Benchmark 

  Vopt increases by 10’s of mV when variation included 
  Energy gain diminish by roughly 12% 
  Overall impact of variation on energy efficiency is managable 

Energy Gain 
(No Variation) 

Energy Gain 
(3σ Variation) 
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Impact of Transistor Vt 

  Leakage, Amdahl, and Architectural overheads 
  At low-Vt leakage dominates achievable energy 
  At high-Vt parallelism overheads dominate (cannot parallelize enough) 
  Strategy: increase Vt to inflection point 

All Overheads 

Vopt 
~250 mV 
above Vt 
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Impact of Transistor Vt 

  Leakage, Amdahl, and Architectural overheads 
  At low-Vt leakage dominates achievable energy 
  At high-Vt parallelism overheads dominate (cannot parallelize enough) 
  Strategy: increase Vt to inflection point 

All Overheads 



28 28 

28 

University of Michigan 28 DaSi – June 10, 2012 

Impact of Transistor Vt 

  Leakage, Amdahl, and Architectural overheads 
  At low-Vt leakage dominates achievable energy 
  At high-Vt parallelism overheads dominate (cannot parallelize enough) 
  Strategy: increase Vt to inflection point 

All Overheads 

Inflection point indicates where 
leakage and parallelism 
overhead are balanced. 

Inflection 
Point 

Parallelism 
Overhead 
Dominates 

Leakage 
Dominates 
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Contrast:  No Performance Constraint 

  Vopt (no overheads) crossed from Sub-Vt to Super-Vt in 90nm 
 No energy saved by running regular-Vt devices Sub-Vt  

  ~100-200 mV above Vt in 32nm 
 Leakage-only case. Not application dependent. 

Regular Vt 
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