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The Problem of Power

Circuit supply Power does not decrease at the
voltages are no same rate that transistor count
longer scaling... Increases
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4 The emerging dilemma: )
More and more cores can fit on a die, but we can not turn them all on!
“Dark Silicon.”
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Today: Super-Vth
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Source: Kurd et. al., JSSC 2009.
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Energy/Delay with Voltage Scaling
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Minimum energy reached when further voltage scaling increases leakage
more than dynamic energy is reduced

In older technologies, Vot < Vin giving rise to subthreshold design

[Zhai, DAC 2004]
32nm CMOS
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Lowest Energy Operation ftc
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Performance vs. Energy ntc

Measured Performance and Energy of ARM Cortex M3 in 180nm CMOS
Vopt = 400mV with Eqpt = 30 pJd/instr and 73 kHz frequency
At 500 mV, 40 pJ/instr and 1 MHz frequency
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Parallelization — The Dim Horseman

Start with runtime at nominal voltage

Lower the voltage to increase energy-efficiency !

Add more cores to overcome performance loss
(meet the original runtime)

Repeat the process until reaching Vopt {
4 N
How do parallelization overheads impact Vopt?
What is the number of cores @ Vopt? [ }[
How do these numbers change with technology scaling? [ ] [
o /
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Voltage Scaling w/ Performance Recovery nic

Non-ideal parallelism — energy overhead — increase in V.t and Eqpt
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Overhead: Amdahl’s Law
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Application-dependent scalability impacts energy optimality

Model non-ideal speedup with Amdahl’s equation
Obtain Amdahl serial coefficient S(N) = 1/[(1 = P) + P/N]

Simulated results of SPLASH-2 benchmarks in M5

|deal memory/caches
Source: Amdahl et. al., AFIPS 1967.
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Overhead: Amdahl’s Law, cont.
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Vopt increases (e.g. from 300 mV to 400 mV)

Parallelization overheads increase penalty for low-voltage operation
More energy savings if operated at a higher voltage

Minimum energy point increases

Dependent on Amdahl serial coefficient
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Overhead: Architectural & Physical
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Feature

Cores
L1 Caches

L2 Caches

Description

1 to 64 one-IPC Alpha cores @ 1GHz

32 kB, 1 cycle latency,
4-way associative, 64-byte line size

Shared 1MB divided evenly between
cores, 10 cycle latency,
8-way associative, 64-byte line size

Interconnect 2-GHz Routers, 128-bit,

2-stage routers, 50 cycle-access to
main memory

Architectural & physical overheads include
Coherence protocols, cache and memory hierarchy

Physical routing, interconnect networks

SPLASH-2 benchmarks simulated on gem5 architecture

Further reduces achievable energy-efficiency, increases Vopt
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Optimal Operating Voltage Across Technology
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Voltage (V)
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Technology

Tested on 6 commercial technologies from 180 — 32nm
NTC region is 200 mV to 400 mV above Vt in recent techs
Approximately tracks with Vt

Optimal energy for single, parallelized task — best way to
use extra cores on CMP
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Optimal Operating Voltage Across Technology

—r
T

------------------------------
e
o
“u
e
Yo
...
.....
.....

NTC Region 200 mV
to 400 mV above Vt
and tracks.

Zhai, ISLPED 2007
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NTC region is 200 mV to 400 mV above Vt in recent techs
Approximately tracks with Vt

Optimal energy for single, parallelized task — best way to
use extra cores on CMP
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Gain fromV toV
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7X Energy Gain > 4X Energy Gain
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Energy gain over nominal supply voltage

ntc

Cores used to parallelize decreased from 20 to 12 cores

Energy gains decrease from 7.5x to 4x in 32nm
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Near-Threshold Computing
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Near-Threshold Computing (NTC): )

University of Michigan

10 - 50X power reduction

3 - 8X energy reduction
Minimize energy while considering latency

* >60x = 3-8x 10x
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Architectural Impact of NTC
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Caches have higher Vopt and operating frequency
Smaller activity rate when compared to core logic
Leakage larger proportion of total power in caches
Higher Vt can offset this somewhat
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Architectural Impact of NTC
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Caches have higher Vopt and operating frequency
Smaller activity rate when compared to core logic
Leakage larger proportion of total power in caches
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New NTC Architectures

L Next Level Memory J L Next Level Memory J
< -

BUS / Switched Network BUS / Switched Network
-+ 4+ 2+

iJ - J - J L1J U ’ ClusterJ CIusterJ ... Cluster
Core Core Core Core e -
L J L J L J L J L J Cluster

L1J‘ L1J L1LL1J
SRAM runs at a higher Vpp than
cores with energy efficienc core || core || core || core
ay y sl
Caches / Core Inversion Advantages:
Cache runs faster than core Clustered sharing

Less coherence/snoop traffic

Clustered architectures Virtualizes the space (looks larger)

Multiple Cores share L1

L1 satisfy all core requests in * Drawbacks: -

1-cycle Core conflicts evicting L1 data

Cores see view of private Additional Bus/Interconnect from cores to L1
single cycle L1 Single larger cache increases energy/access
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Centip3De Design

128 ARM Cortex-M3 cores
7-layer stack architecture
TSV interconnects
Physical Specs
130nm technology
12.66 mm x 5 mm per layer
92M device across 4 layers

/
Communication Communication D. Fick, ISSCC 2012
Michigan Column Column
Designed < e I Core Layer il
828 i Cache Layer 13um Wirebonds to DRAM
Backmetal
o 2 Cache Layer T
> . Core Layer
v DRAM Control Layer
IF DRAM Bitcell Layer
Tezzaron TR DRAM Bitcell Layer
Octopus <
DRAM
-
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NTC Example: Centip3De Results
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= Measured Results (DMIPS/W
Centip3De - 3,930 (130nm)

= Estimated Results:
Centip3De - 18,500 (45nm)
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4-Core 3-Core 2-Core 1-Core

System Configuration
= Many different voltage configurations
= Cores operate from 0.65 V (10 MHz) to 1.15 V (80 MHz)
= L1 caches operate from 0.8 V (80 MHz) to 1.65 V (160 MHz)
= Max of four cores/cache

= 4.5x energy efficiency gain from NT operation

Source: D. Fick, et. al., ISSCC 2012
University of Michigan DaSi - June 10, 2012 21



Conclusions

Past: Area-Constrained Computing
Traditional dynamic voltage and frequency scaling
Lowers voltage to save energy, but only when idling
With latency-sensitive workloads increase voltage to full

Today: Power-Constrained Computing — Dark Silicon
Computation is limited by power
Glut of Cores: not possible to use all cores simultaneously
By improving energy efficiency, more cores can be enabled
High energy-efficiency leads to improved computational performance

Approach: Near-Threshold Computing
Reduce voltage to increase energy-efficiency
Maintain throughput and latency by parallelizing

Optimal energy achieves 4x improvement while parallelizing across ~12 cores
on average
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Additional Information Slides

180nm 130nm 90nm 65nm 40nm 32nm

Bar 12.7x 7.9% 10.0x 7.8% 5.7x 5.2%
(71) (55) (69) (43) (44) (19)

Cho 6.1x 3.9x 4.6x 4.3x 3.2% 3.5%
(13) (10) (14) (12) (1) 9)

Fft 13.2x 8.3% 10.4x 8.0x 5.8x 5.2%
(68) (82) (67) (42) (43) (23)

Fmm | 7.7% 4.8% 6.0% 5.3x 3.9x% 4.1x
(21) (20) (19) (16) (16) (12)
Results Per Benchmark Luc | 8.6% 5.3% 6.7x | 5.9x | 42x | 4.4x
(26) (25) (24) (18) (21) (13)

Lun 4.1x% 2.7% 3.1x 3.0x 2.3% 2.6%
(8) (6) () (6) (6) (6)

Occ 6.9% 4.3x% 5.3x 4.8% 3.5% 3.8%
(14) (16) 17) (14) (13) )

Ocn 6.8% 4.2x% 5.2x 4.7% 3.5% 3.8%
(15) (12) A7) (14) (14) )

Rad 5.7% 3.6x 4.3x% 4.0% 3.0x 3.4x
(1) (12) (12) (10) (&) (8)

Ray 7.3% 4.6x 5.6% 5.0% 3.7% 4.0x
(17) (15) (16) (17) (13) (11)

Wan 12.6x 7.8x 9.9x% 7.8% 5.7x 5.2%
(71) (56) (70) (32) (45) (19)

Was 18x% 11.3x 13.0x 9.0x 6.8% 5.5%
(186) (250) (121) (51) (79) (25)

Table 1: Energy gain and optimal number of cores Nopt (in
parenthesis) across SPLASH-2 benchmarks and technolo-
gies when including the three voltage scaling overheads.
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Impact of Variation in 40nm
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Long logic chains average out variation
Local variation is ~30% of total delay variation for a single gate in NTC
Decreases to 10% of total variation for a logic chain of 31 gates

Multiple paths
Higher mean delay, but tighter variation. Increase Vopt 30 to 60 mV.
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Vopt Including Process Variations
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Vopt increases by 10’s of mV when variation included
Energy gain diminish by roughly 12%
Overall impact of variation on energy efficiency is managable
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Impact of Transistor Vt

All Overheads
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Leakage, Amdahl, and Architectural overheads
At low-Vt leakage dominates achievable energy

At high-Vt parallelism overheads dominate (cannot parallelize enough)
Strategy: increase V1 to inflection point
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Impact of Transistor Vt

All Overheads
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Impact of Transistor Vt

All Overheads
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Inflection point indicates where

leakage and parallelism
overhead are balanced.

Leakage, Amdahl, and Architectural overheads
At low-Vt leakage dominates achievable energy

At high-Vt parallelism overheads dominate (cannot parallelize enough)
Strategy: increase V1 to inflection point
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Contrast: No Performance Constraint
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Vopt (no overheads) crossed from Sub-Vt to Super-Vtin 90nm

No energy saved by running regular-Vt devices Sub-Vt
~100-200 mV above Vtin 32nm
Leakage-only case. Not application dependent.
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Contrast: No Performance Constraint

Voltage (V)
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